The high feature dimensionality is a challenge in music emotion recognition. There is no common consensus on a relation between audio features and emotion. The MER system uses all available features to recognize emotion; however, this is not an optimal solution since it contains irrelevant data acting as noise. In this paper, we introduce a feature selection approach to eliminate redundant features for MER. We created a Selected Feature Set (SFS) based on the feature selection algorithm (FSA) and benchmarked it by training with two models, Support Vector Regression (SVR) and Random Forest (RF) and comparing them against with using the Complete Feature Set (CFS). The result indicates that the performance of MER has improved for both Random Forest (RF) and Support Vector Regression (SVR) models by using SFS. We found using FSA can improve performance in all scenarios, and it has potential benefits for model efficiency and stability for MER task.
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
现有的基于3D骨架的动作识别方法通过将手工制作的动作功能编码为图像格式和CNN解码,从而达到了令人印象深刻的性能。但是,这种方法在两种方面受到限制:a)手工制作的动作功能很难处理具有挑战性的动作,b)通常需要复杂的CNN模型来提高动作识别精度,这通常会发生重大计算负担。为了克服这些局限性,我们引入了一种新颖的AFE-CNN,它致力于增强基于3D骨架的动作的特征,以适应具有挑战性的动作。我们提出了功能增强从关键关节,骨向量,关键框架和时间视角的模块,因此,AFE-CNN对摄像头视图和车身大小变化更为强大,并显着提高了对挑战性动作的识别精度。此外,我们的AFE-CNN采用了轻巧的CNN模型以增强动作功能来解码图像,从而确保了比最新方法低得多的计算负担。我们在三个基于基准骨架的动作数据集上评估了AFE-CNN:NTU RGB+D,NTU RGB+D 120和UTKINECT-ACTION3D,并取得了广泛的实验结果,这表明我们对AFE-CNN的出色表现。
translated by 谷歌翻译
3D姿势估计最近在计算机视觉领域中获得了重大利益。现有的3D姿势估计方法非常依赖大尺寸井井有条的3D姿势数据集,并且由于训练集中的3D姿势的多样性有限,它们在看不见的姿势上的模型概括不佳。在这项工作中,我们提出了一种新型的人类姿势发生器Posegu,它仅能访问少量的种子样本,同时为反事实风险最小化以追求无偏见的评估目标。广泛的实验表明,在三个流行的基准数据集上,几乎所有正在考虑的最先进的3D人类姿势方法。经验分析还证明,Posegu会产生3D姿势,具有改进的数据多样性和更好的概括能力。
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译
Autonomous cars are indispensable when humans go further down the hands-free route. Although existing literature highlights that the acceptance of the autonomous car will increase if it drives in a human-like manner, sparse research offers the naturalistic experience from a passenger's seat perspective to examine the human likeness of current autonomous cars. The present study tested whether the AI driver could create a human-like ride experience for passengers based on 69 participants' feedback in a real-road scenario. We designed a ride experience-based version of the non-verbal Turing test for automated driving. Participants rode in autonomous cars (driven by either human or AI drivers) as a passenger and judged whether the driver was human or AI. The AI driver failed to pass our test because passengers detected the AI driver above chance. In contrast, when the human driver drove the car, the passengers' judgement was around chance. We further investigated how human passengers ascribe humanness in our test. Based on Lewin's field theory, we advanced a computational model combining signal detection theory with pre-trained language models to predict passengers' humanness rating behaviour. We employed affective transition between pre-study baseline emotions and corresponding post-stage emotions as the signal strength of our model. Results showed that the passengers' ascription of humanness would increase with the greater affective transition. Our study suggested an important role of affective transition in passengers' ascription of humanness, which might become a future direction for autonomous driving.
translated by 谷歌翻译
Detecting abnormal crowd motion emerging from complex interactions of individuals is paramount to ensure the safety of crowds. Crowd-level abnormal behaviors (CABs), e.g., counter flow and crowd turbulence, are proven to be the crucial causes of many crowd disasters. In the recent decade, video anomaly detection (VAD) techniques have achieved remarkable success in detecting individual-level abnormal behaviors (e.g., sudden running, fighting and stealing), but research on VAD for CABs is rather limited. Unlike individual-level anomaly, CABs usually do not exhibit salient difference from the normal behaviors when observed locally, and the scale of CABs could vary from one scenario to another. In this paper, we present a systematic study to tackle the important problem of VAD for CABs with a novel crowd motion learning framework, multi-scale motion consistency network (MSMC-Net). MSMC-Net first captures the spatial and temporal crowd motion consistency information in a graph representation. Then, it simultaneously trains multiple feature graphs constructed at different scales to capture rich crowd patterns. An attention network is used to adaptively fuse the multi-scale features for better CAB detection. For the empirical study, we consider three large-scale crowd event datasets, UMN, Hajj and Love Parade. Experimental results show that MSMC-Net could substantially improve the state-of-the-art performance on all the datasets.
translated by 谷歌翻译
事实证明,大脑时代是与认知性能和脑部疾病相关的表型。实现准确的脑年龄预测是优化预测的脑时代差异作为生物标志物的必要先决条件。作为一种综合的生物学特征,很难使用特征工程和局部处理的模型来准确利用大脑时代,例如局部卷积和经常性操作,这些操作一次是一次处理一个本地社区。取而代之的是,视觉变形金刚学习斑块令牌的全球专注相互作用,引入了较少的电感偏见和建模长期依赖性。就此而言,我们提出了一个新的网络,用于学习大脑年龄,以全球和局部依赖性解释,其中相应的表示由连续排列的变压器(SPT)和卷积块捕获。 SPT带来了计算效率,并通过从不同视图中连续编码2D切片间接地定位3D空间信息。最后,我们收集了一大批22645名受试者,年龄范围从14到97,我们的网络在一系列深度学习方法中表现最好,在验证集中产生了平均绝对错误(MAE)为2.855,而在独立方面产生了2.911测试集。
translated by 谷歌翻译
基于模型的单图像去悬算算法恢复了带有尖锐边缘的无雾图像和真实世界的朦胧图像的丰富细节,但以低psnr和ssim值的牺牲来为合成朦胧的图像。数据驱动的图像恢复具有高PSNR和SSIM值的无雾图图像,用于合成朦胧的图像,但对比度低,甚至对于现实世界中的朦胧图像而言,甚至剩下的雾霾。在本文中,通过组合基于模型和数据驱动的方法来引入一种新型的单图像飞行算法。传输图和大气光都是首先通过基于模型的方法估算的,然后通过基于双尺度生成对抗网络(GAN)的方法进行完善。所得算法形成一种神经增强,在相应的数据驱动方法可能不会收敛的同时,该算法的收敛非常快。通过使用估计的传输图和大气光以及KoschmiederLaw来恢复无雾图像。实验结果表明,所提出的算法可以从现实世界和合成的朦胧图像中井除雾霾。
translated by 谷歌翻译
不确定性量化是现实世界应用中机器学习的主要挑战之一。在强化学习中,一个代理人面对两种不确定性,称为认识论不确定性和态度不确定性。同时解开和评估这些不确定性,有机会提高代理商的最终表现,加速培训并促进部署后的质量保证。在这项工作中,我们为连续控制任务的不确定性感知强化学习算法扩展了深层确定性策略梯度算法(DDPG)。它利用了认识论的不确定性,以加快探索和不确定性来学习风险敏感的政策。我们进行数值实验,表明我们的DDPG变体在机器人控制和功率网络优化方面的基准任务中均优于香草DDPG而没有不确定性估计。
translated by 谷歌翻译